Ahuja, D.V., and Coons, S.A., Geometry for construction and display, IBM Syst. Jour., Nos. 3-4, pp. 188-205, 1968. | |
Akima, H., A new method of interpolation and smooth curve fitting based on local procedures, Jour. ACM, Vol. 17, pp. 589-602, 1970. | |
Akman, V., and Arslan, A., Sweeping with all graphical ingredients in a topological picturebook, Comput. and Graph., Vol. 16, No. 3, pp. 273-281, 1992. | |
Ball, A., CONSURF. Part 1: Introduction to the conic lofting tile, CAD, Vol. 6, No. 4, pp. 243-249, 1974. | |
Ball, A., CONSURF. Part 2: Description of the algorithms, CAD, Vol. 7, No. 4, pp. 237-242, 1975. | |
Ball, A., CONSURF. Part 3: How the program is used, CAD, Vol. 9, No. 1, pp. 9-12, 1977. | |
Ballay, H., and Storn, R., A tool for checking С coding conventions, C/C++ Users Journal, Vol. 12, No. 27, pp. 41-50, 1994. | |
Barnhill, R., Coons' patches and convex combinations, in [Pieg93]. | |
Barr, A.H., Global and local deformations of solid primitives, SIGGRAPH 83 Tutorial Notes, Detroit, 1983. | |
Barsky, B.A., and DeRose, T.D., Geometric continuity of parametric curves: Three equivalent characterizations, IEEE Comput. Graph. and Appl, Vol. 9, No. 6, pp. 60-68, 1989. | |
Barsky, B.A., and DeRose, T.D., Geometric continuity of parametric curves: Construction of geometrically continuous splines, IEEE Comput. Graph. and Appl, Vol. 10, No. 1, pp. 60-68, 1990. | |
Bartels, R.H., Beatty, J.C., and Barsky, B.A., An Introduction to Splines for Use in Computer Graphics and Geometric Modeling, San Mateo, CA: Morgan Kaufmann, 1987. | |
Beach, R.C., An Introduction to the Curves and Surfaces of Computer-Aided Design, New York: Van Nostrand Reinhold, 1991. | |
Bernstein, S.N., Demonstration du theoreme de Weierstrass fondee sur le calcul des probabilites, Commun. Soc. Math. Khrakow, Vol. 12, No. 2, pp. 1-2, 1912. | |
Bezier, P.E., Numerical Control: Mathematics and Applications, New York: John Wiley, 1972. | |
Bezier, P.E., The Mathematical Basis of the UNISURF CAD System, London: Butterworth, 1986. | |
Bloomenthal, M., and Riesenfeld, R.F., Approximation of sweep surfaces by tensor product NURBS, Curves and Surfaces in Computer Vision and Graphics II, SPIE Proc. (Society of Photo-Optical Instrumentation Engineers), Vol. 1610, pp. 132-144, 1991. | |
Bloor, M., and Owen, J., CAD/CAM product-data exchange: The next step, CAD, Vol. 23, No. 4, pp. 237-243, 1991. | |
Boehm, W., Inserting new knots into B-spline curves, CAD, Vol. 12, No. 4, pp. 199-201, 1980. | |
Boehm, W., Farin, G., and Kahmann, J., A survey of curve and surface methods in CAGD, Comput. Aid. Geom. Des., Vol. 1, No. 1, pp. 1-60, 1984. | |
Boehm, W., and Prautzsch, H., The insertion algorithm, CAD, Vol. 17, No. 2, pp. 58-59, 1985. | |
Boehm, W., On the efficiency of knot insertion algorithms, Comput. Aid. Geom. Des., Vol. 2, Nos. 1-3, pp. 141-143, 1985. | |
Boehm, W., and Hansford, D., Bezier patches on quadrics, in NURBS for Curve and Surface Design, Farin, G., Ed., Philadelphia: SIAM, pp. 1-14, 1991. | |
Boehm, W., and Prautzsch, H., Geometric Concepts for Geometric Design, Wellesley, MA: A.K. Peters, 1994. | |
Bronsvoort, W., and Waarts, J., A method for converting the surface of a generalized cylinder into a B-spline surface, Comput. and Graph., Vol. 16, No. 2, pp. 175-178, 1992. | |
Butterfield, K.R., The computation of all the derivatives of a B-spline basis, Jour. Inst. Math. Applic, Vol. 17, pp. 15-25, 1976. | |
Chang, G., and Wu, J., Mathematical foundations of Bezier's technique, CAD, Vol. 13, No. 3, pp. 133-136, 1981. | |
Choi, B.K., and Lee, C, Sweep surfaces modelling via coordinate transformations and blending, CAD, Vol. 22, No. 2, pp. 87-96, 1990. | |
Choi, B.K., Surface Modeling for CAD/CAM, New York: Elsevier, 1991. | |
Chou, J., and Piegl, L., Data reduction using cubic rational B-splines, IEEE Comput. Graph. and Appl, Vol. 12, No. 3, pp. 60-68, 1992. | |
Chou, J.J., Higher order Bezier circles, CAD, to be published, 1995. | |
Cobb, E.S., "Design of Sculptured Surfaces Using the B-spline Representation," Ph.D. dissertation, University of Utah, 1984. | |
Cohen, E., Lyche, Т., and Riesenfeld, R.F., Discrete B-splines and subtrision techniques in Computer-Aided Geometric Design and Computer Graphics, Cornput. Graph. and Image Process., Vol. 14, pp. 87-111, 1980. | |
Cohen, E., Lyche, Т., and Schumaker, L.L., Algorithms for degree-raising of splines, ACM TOG, Vol. 4, No. 3, pp. 171-181, 1985. | |
Coons, S.A., Surfaces for computer-aided design of space forms, MAC-TR-41, MIT, June 1967. | |
Coquillart, S., A control-point-based sweeping technique, IEEE Comput. Graph. and Appl., Vol. 7, No. 11, pp. 36-45, 1987. | |
Coquillart, S., Computing offsets of B-spline curves, CAD, Vol. 19, No. 6, pp. 305-309, 1987. | |
Coquillart, S., Extended free-form deformation: A sculpturing tool for 3D geometric modeling, Comput. Graph., Vol. 24, No. 4, pp. 187-193, 1990. | |
Coquillart, S., and Jancene, P., Animated free-form deformation: An interactive animation technique, Comput. Graph., Vol. 25, No. 4, pp. 23-26, 1991. | |
Cox, M.G., The numerical evaluation of B-splines, Jour. Inst. Math. Ap-plic, Vol. 10, pp. 134-149, 1972. | |
Coxeter, H.S.M., and Greitzer, S.L., Geometry Revisited, Washington, DC: Mathematical Association of America, 1967. | |
Coxeter, H.S.M., Projective Geometry, Toronto, Canada: Univ. of Toronto Press, 1974. | |
Coxeter, H.S.M., Introduction to Geometry, New York: John Wiley, 1980. | |
Curry, H.B., and Schoenberg, I.J., On spline distributions and their limits: the Polya distribution functions, Abstract 380t, Bull. Amer. Math. Soc., Vol. 53, p. 109, 1947. | |
Daniel, M., and Daubisse, J.C., The numerical problem of using Bezier curves and surfaces in the power basis, Comput. Aid. Geom. Des., Vol. 6, pp. 121-128, 1989. | |
Dannenberg, L., and Nowacki, EL, Approximate conversion of surface representations with polynomial bases, Comput. Aid. Geom. Des., Vol. 2, pp. 123-132, 1985. | |
De Boor, C, On calculating with B-splines, Jour. Approx. Theory, Vol. 6, pp. 50-62, 1972. | |
De Boor, C, A Practical Guide to Splines, New York: Springer-Verlag, 1978. | |
De Boor, C, Cutting corners always works, Comput. Aid. Geom. Des., Vol. 4, Nos.1-2, pp. 125-131, 1987. | |
De Boor, C, B(asic)-spline basics, in [Pieg93]. | |
de Casteljau, P., Shape Mathematics and CAD, London: Kogan Page, 1986. | |
de Casteljau, P., Polar forms for curve and surface modeling as used at Citroen, in . | |
de Montaudouin, Y., and Tiller, W., The Cayley method in computer-aided geometric design, Comput. Aid. Geom. Des., Vol. 1, No. 4, pp. 309-326, 1984. | |
Do Carmo, M.P., Differential Geometry of Curves and Surfaces, Engle-wood Cliffs, NJ: Prentice-Hall, 1976. | |
Eck, M., Degree reduction of Bezier curves, Comput. Aid. Geom. Des., Vol. 10, pp. 237-251, 1993. | |
Farin, G.E., Algorithms for rational Bezier curves, CAD, Vol. 15, No. 2, pp. 73-77, 1983. | |
Farin, G.E., Rational curves and surfaces, in Mathematical Aspects in Computer Aided Geometric Design, Lyche, Т., and Schumaker, L.L., Eds., New York: Academic Press, 1989. | |
Farin, G.E., Curves and Surfaces for Computer Aided Geometric Design - A Practical Guide, 3rd ed., Boston: Academic Press, 1993. | |
Farouki, R., The approximation of non-degenerate offset surfaces, Comput. Aid. Geom. Des., Vol. 3, pp. 15-43, 1986. | |
Farouki, R.T., and Rajan, V.T., On the numerical condition of polynomials in Bernstein form, Comput. Aid. Geom. Des., Vol. 4, pp. 191-216, 1987. | |
Farouki, R.T., and Rajan, V.T., Algorithms for polynomials in Bernstein form, Comput. Aid. Geom. Des., Vol. 5, pp. 1-26, 1988. | |
Faux, I.D., and Pratt, M.J., Computational Geometry for Design and Manufacture, Chichester, UK: Ellis Horwood Ltd., 1981. | |
Ferguson, J.C., Form, characterized in a special class of parametrized curves, Report 3122-31, TRW Corporation, Redondo Beach, CA, 1966. | |
Ferguson, J.C., Form, characterized in a special class of parametrized curves - II, Report 3122-3-237, TRW Corporation, Redondo Beach, CA, 1967. | |
Ferguson, J.C., and Miller, K.L., Characterization of shape in a class of third degree algebraic curves, Report 5322-3-5, TRW Corporation, Redondo Beach, CA, 1969. | |
Ferguson, J.C., F-methods for free-form curve and hypersurface definition, in . | |
Filip, D., and Ball, Т., Procedurally representing lofted surfaces, IEEE Comput. Graph. and Appl, Vol. 9, No. 6, pp. 27-33, 1989. | |
Foley, J., van Dam, A., Feiner, S., and Hughes, J., Computer Graphics: Principles and Practice, Reading, MA: Addison-Wesley, 1990. | |
Forrest, A.R., "Curves and Surfaces for Computer-Aided Design," Ph.D. dissertation, Cambridge University, Cambridge, UK, 1968. | |
Forrest, A.R., Shape classification of the non-rational twisted cubic curve in terms of Bezier polygons, CAD Group Document No. 52, Cambridge Univ., Cambridge, UK, 1970. | |
Forrest, A.R., Interactive interpolation and approximation by Bezier polynomials, The Comput. Jour., Vol. 15, No. 1, pp. 71-79, 1972. Corrected and updated version in CAD, Vol. 22, No. 9, pp. 527-537, 1990. | |
Forrest, A.R., The twisted cubic curve: A computer-aided geometric design approach, CAD, Vol. 12, No. 2, pp. 165-172, 1980. | |
Forsey, D., and Bartels, R., Hierarchical B-spline refinement, Comput. Graph., Vol. 22, No. 4, pp. 205-212, 1988. | |
Fournier, A., and Wesley, M., Bending polyhedral objects, CAD, Vol.15, No. 2, pp. 79-87, 1983. | |
Fowler, В., Geometric manipulation of tensor product surfaces, Special Issue of Comput. Graph., Symposium on Interactive 3D Graphics, pp. 101-108, 1992. | |
Fowler, В., and Bartels, R., Constraint-based curve manipulation, IEEE Comput. Graph. and Appl., Vol. 13, No. 5, pp. 43-49, 1993. | |
Fuhr, R.D., and Kallay, M., Monotone linear rational spline interpolation, Comput. Aid. Geom. Des., Vol. 9, No. 4, pp. 313-319, 1992. | |
Geise, G., and Langbecker, U., Finite quadratic segments with four conic boundary curves, Comput. Aid. Geom. Des., Vol. 7, pp. 141-150, 1990. | |
Goodman, Т., Hermite-Birkhoff interpolation by Hermite-Birkhoff splines, Proc. Roy. Soc. Edinburgh, Vol. 88(A), Parts 3/4, pp. 195-201, 1981. | |
Gordon, W., Spline-blended surface interpolation through curve networks, Jour. Math. Mech., Vol. 18, No. 10, pp. 931-952, 1969. | |
Gordon, W., Blending-function methods of bivariate and multivariate interpolation and approximation, SIAM Jour. Numer. Anal., Vol. 8, pp. 158-177, 1971. | |
Gordon, W.J., and Riesenfeld, R.F., Bernstein-Bezier methods for the computer-aided design of free-form curves and surfaces, Jour. Assoc. Computing Mach., Vol. 21, No. 2, pp. 293-310, 1974. | |
Gordon, W.J., and Riesenfeld, R.F., B-spline curves and surfaces, in Computer Aided Geometric Design, Barnhill, R.E., and Riesenfeld, R.F., Eds., New York: Academic Press, 1974. | |
Gordon, W., Sculptured surface definition via blending function methods, in [Pieg93]. | |
Guggenheimer, H., Computing frames along a trajectory, Comput. Aid. Geom. Des., Vol. 6, pp. 77-78, 1989. | |
Hoffmann, С.М., Geometric & Solid Modeling, San Mateo, СA: Morgan Kaufmann, 1989. | |
Hohmeyer, M. and Barsky, В., Skinning rational B-spline curves to construct an interpolatory surface, Comput. Vis., Graph. and Image Processing: Graphical Models and Image Processing, Vol. 53, No. 6, pp. 511-521, 1991. | |
Hoschek, J., Spline approximation of offset curves, Comput. Aid. Geom. Des., Vol. 5, pp. 33-40, 1988. | |
Hoschek, J., Bezier curves and surface patches on quadrics, in Mathematical Methods in Computer Aided Geometric Design II, Lyche, Т., and Schumaker, L., Eds., New York: Academic Press, pp. 331-342, 1992. | |
Hoschek, J., Circular splines, CAD, Vol. 24, No. 11, pp. 611-618, 1992. | |
Hoschek, J., and Lasser, D., Fundamentals of Computer Aided Geometric Design, Wellesley, MA: A.K. Peters, Ltd., 1993. | |
Howard, Т., Evaluating PHIGS for CAD and general graphics applications, CAD, Vol. 23, No. 4, pp. 244-251, 1991. | |
Howard, T.L.J., Hewitt, W.T., Hubbold, R.J., and Wyrwas, K.M., A Practical Introduction to PHIGS and PHIGS PLUS, Reading, MA: Addi-son-Wesley, 1991. | |
Hsu, W., Hughes, J., and Kaufman, H., Direct manipulation of free-form deformations, Comput. Graph., Vol. 26, No. 2, pp. 177-184, 1992. | |
The Initial Graphics Exchange Specification (IGES) Version 5.2, ANSI Y14.26M, available from U.S. Product Data Association (US PRO), Fairfax, VA, USA, 1993. | |
Ilyin, V.A., and Poznyak, E.G., Analytic Geometry, Moscow: Mir Publishers, 1984. | |
Kaplan, W., Advanced Calculus, Reading, MA: Addison Wesley, 1952. | |
Klok, F., Two moving coordinate frames for sweeping along a 3D trajectory, Comput. Aid. Geom. Des., Vol. 3, pp. 217-229, 1986. | |
Knuth, D.E., The Art of Computer Programming. Vol. 1, Fundamental Algorithms, Reading, MA: Addison-Wesley, 1973. | |
Lachance, M.A., Chebyshev economization for parametric surfaces, Comput. Aid. Geom. Des., Vol. 5, pp. 195-208, 1988. | |
Lancaster, P., and Salkauskas, K., Curve and Surface Fitting, New York: Academic Press, 1986. | |
Lane, J.M., and Riesenfeld, R.F., A theoretical development for the computer generation and display of piecewise polynomial surfaces, IEEE Trans. Patt. Anal. Mach. Intell., Vol. PAMI-2, No. 1, pp. 35-46, 1980. | |
Lane, J.M., and Riesenfeld, R.F., A geometric proof for the variation diminishing property of B-spline approximation, Jour. Approx. Theory, Vol. 37, pp. 1-4, 1983. | |
Laurent-Gengoux, P., and Mekhilef, M., Optimization of a NURBS representation, CAD, Vol. 25, No. 11, pp. 699-710, 1993. | |
Lawrence, J.D., A Catalog of Special Plane Curves, New York: Dover, 1972. | |
Lee, E.T.Y., B-spline Primer, Boeing Document, 1983. | |
Lee, E.T.Y., Rational quadratic Bezier representation for conics, in Geometric Modeling: Algorithms and New Trends, Farin, G.E., Ed., Philadelphia: SIAM, pp. 3-19, 1987. | |
Lee, E.T.Y., Choosing nodes in parametric curve interpolation, CAD, Vol. 21, pp. 363-370, 1989. | |
Lee, E.T.Y., and Lucian, M.L., Mobius reparametrization of rational B-splines, Comput. Aid. Geom. Des., Vol. 8, pp. 213-215, 1991. | |
Liming, R.A., Practical Analytic Geometry with Applications to Aircraft, New York: Macmillan, 1944. | |
Liming, R.A., Mathematics for Computer Graphics, Fallbrook, CA: Aero Publishers Inc., 1979. | |
Lin, P., and Hewitt, W., Expressing Coons-Gordon surfaces as NURBS, CAD, Vol. 26, No. 2, pp. 145-155, 1994. | |
Lorentz, G.G., Berntein Polynomials, New York: Chelsea Publishing Co., 1986. | |
Lyche, Т., Cohen, E., and Morken, K., Knot line refinement algorithms for tensor product splines, Comput. Aid. Geom. Des., Vol. 2, Nos.1-3, pp. 133-139, 1985. | |
Lyche, Т., and Morken, K., Knot removal for parametric B-spline curves and surfaces, Comput. Aid. Geom. Des., Vol. 4, pp. 217-230, 1987. | |
Lyche, Т., and Morken, K., A data reduction strategy for splines with applications to the approximation of functions and data, IMA Jour. Num. Anal., Vol. 8, pp. 185-208, 1988. | |
Matsuki, N., An interactive shape modification method for B-spline surfaces, in Human Aspects in Computer Integrated Manufacturing, Oiling, G., and Kimura, F., Eds., Amsterdam: Elsevier Science Publishers B.V. (North-Holland) (IFIP), pp. 385-397, 1992. | |
Mortenson, M.E., Geometric Modeling, New York: John Wiley, 1985. | |
Patterson, R.R., Projective transformations of the parameter of a Bern-stein-Bezier curve, ACM TOG, Vol. 4, No. 4, pp. 276-290, 1985. | |
Piegl, L., A geometric investigation of the rational Bezier scheme of Computer Aided Design, Comput. in Industry, Vol. 7, pp. 401-410, 1986. | |
Piegl, L., and Tiller, W., Curve and surface constructions using rational B-splines, CAD, Vol. 19, No. 9, pp. 485-498, 1987. | |
Piegl, L., A technique for smoothing scattered data with conic sections, Comput. in Industry, Vol. 9, pp. 223-237, 1987. | |
Piegl, L., On the use of infinite control points in CAGD, Comput. Aid. Geom. Des., Vol. 4, pp. 155-166, 1987. | |
Piegl, L., Interactive data interpolation by rational Bezier curves, IEEE Comput. Graph, and Appi, Vol. 7, No. 4, pp. 45-58, 1987. | |
Piegl, L., Hermite- and Coons-like interpolants using rational Bezier approximation form with infinite control points, CAD, Vol. 20, No. 1, pp. 2-10, 1988. | |
Piegl, L., Coons-type patches, Comput. and Graph., Vol. 12, No. 2, pp. 221-228, 1988. | |
Piegl, L., Key developments in computer-aided geometric design, CAD, Vol. 21, No. 5, pp. 262-273, 1989. | |
Piegl, L., and Tiller, W., A menagerie of rational B-spline circles, IEEE Comput. Graph. and Appl., Vol. 9, No. 5, pp. 48-56, 1989. | |
Piegl, L., Modifying the shape of rational B-splines. Part 1: curves, CAD, Vol. 21, No. 8, pp. 509-518, 1989. | |
Piegl, L., Modifying the shape of rational B-splines. Part 2: surfaces, CAD, Vol. 21, No. 9, pp. 538-546, 1989. | |
Piegl, L., Algorithms for computing conic splines, Jour. Comput. in Civil Engrng., Vol. 4, No. 3, pp. 180-197, 1990. | |
Piegl, L., On NURBS: A Survey, IEEE Comput. Graph. and Appl., Vol. 10, No. 1, pp. 55-71, 1991. | |
Piegl, L., and Tiller, W., Storage efficient decomposition of B-spline curves, GSE 91-01, Department of Computer Science and Engineering, Univ. of South Florida, Tampa, FL, 1991. | |
Piegl, L., Ed., Fundamental Developments of Computer Aided Geometric Modeling, London: Academic Press, 1993. | |
Piegl, L., and Tiller, W., Software engineering approach to degree elevation of B-spline curves, CAD, Vol. 26, No. 1, pp. 17-28, 1994. | |
Piegl, L., and Tiller, W., Algorithm for degree reduction of B-spline curves, CAD, Vol. 27, No. 2, 1995. | |
Prautzsch, H., Degree elevation of B-spline curves, Comput. Aid. Geom. Des., Vol. 1, No. 1, pp. 193-198, 1984. | |
Prautzsch, H., and Piper, В., A fast algorithm to raise the degree of spline curves, Comput. Aid. Geom. Des., Vol. 8, pp. 253-265, 1991. | |
Prautzsch, H., and Gallagher, Т., Is there a geometric variation diminishing property for B-spline or Bezier surfaces?, Comput. Aid. Geom. Des., Vol. 9, No. 2, pp. 119-124, 1992. | |
Press, W., Flannery, В., Teukolsky, S., and Vetterling, W., Numerical Recipes in C, Cambridge, UK: Cambridge University Press, 1988. | |
Programmer's Hierarchical Interactive Graphics System (PHIGS), ISO/ IEC 9592-4: (1992), available from National Institute of Standards and Technology (NIST), Gaithersburg, MD, USA. | |
Ramshaw, L., Blossoming: A connect-the-dots approach to splines, Report 19, Digital, Systems Research Center, Palo Alto, CA, 1987. | |
Reimer, G., A method of shape description for mechanical engineering practice, Comput. in Ind., Vol. 3, pp. 137-142, 1982. | |
Riesenfeld, R.F., "Applications of B-spline Approximation to Geometric Problems of Computer-Aided Design," Ph.D. dissertation, Syracuse Univ., 1973. | |
Riesenfeld, R.P., Homogeneous coordinates and projective planes in computer graphics, IEEE Comput. Graph. and Appl, Vol. 1, No. 1, pp. 50-55, 1981. | |
Roberts, L.G., Homogeneous matrix representation and manipulation of n-dimensional constructs, Technical Report MS-1405, Lincoln Laboratory, MIT, Cambridge, MA, 1965. | |
Rogers, D.F., and Adams, J.A., Mathematical Elements for Computer Graphics, 2nd ed., New York: McGraw-Hill, 1990. | |
Salmon, G., A Treatise on Conic Sections, Longman, Green & Co., 6th Edition, London, 1879, Reprinted by Dover Pub., New York. | |
Schoenberg, I.J., Contributions to the problem of approximation of equidistant data by analytic functions, Quart. Appl. Math., Vol. 4, pp. 45-99, 1946. | |
Schoenberg, I.J., On Hermite-Birkhoff interpolation, Jour. Math. Analysis and Applic, Vol. 16, No. 3, pp. 538-543, 1966. | |
Sederberg, Т., Anderson, D., and Goldman, R., Implicit representation of parametric curves and surfaces, Comput. Vis., Graph. and Image Process., Vol. 28, pp. 72-84, 1984. | |
Sederberg, Т., and Parry, S., Free-form deformation of solid geometric objects, Comput. Graph., Vol. 20, No. 4, pp. 151-160, 1986. | |
Siltanen, P., and Woodward, C, Normal orientation methods for 3D offset curves, sweep surfaces and skinning, Proc. Eurographics 92, Vol. 11, No. 3, pp. C-449-C-457, 1992. | |
Smith, L.B., Drawing ellipses, hyperbolas or parabolas with a fixed number of points and maximum inscribed area, The Comput. Jour., Vol. 14, No. 1, pp. 81-86, 1971. | |
Smith, R., Price, J., and Howser, L., A smoothing algorithm using cubic spline functions, NASA Technical Note, TN D-7397, NASA Langley Research Center, Hampton, VA, 1974. | |
Standard for the Exchange of Product Model Data (STEP), ISO 10303, A series of documents. Part 42: Geometric and Topological Representation, ISO 10303-42, Available from ISO Secretariat, National Institute of Standards and Technology (NIST), Gaithersburg, MD, 1994. | |
Stone, M.C., and DeRose, T.C., A geometric characterization of parametric cubic curves, ACM TOG, Vol. 8, No. 3, pp. 147-163, 1989. | |
Straker, D., C-style Standards and Guidelines, New York: Prentice Hall, 1992. | |
Strotman, Т., Private communication, 1991. | |
Su, B., and Liu, D., Computational Geometry - Curves and Surface Modeling, Boston: Academic Press, 1989. | |
Tiller, W., Rational B-splines for curve and surface representation, IEEE Comput. Graph, and Appl., Vol. 3, No. 6, pp. 61-69, 1983. | |
Tiller, W., and Hanson, E., Offsets of two-dimensional profiles, IEEE Comput. Graph, and Appl., Vol. 4, No. 9, pp. 36-46, 1984. | |
Tiller, W., Knot-removal algorithms for NURBS curves and surfaces, CAD, Vol. 24, No. 8, pp. 445-453, 1992. | |
Vandergraft, J., Introduction to Numerical Computations, New York: Academic Press, 1983. | |
Vergeest, J., CAD surface data exchange using STEP, CAD, Vol. 23, No. 4, pp. 269-281, 1991. | |
Versprille, K.J., “Computer-Aided Design Applications of the Rational B-spline Approximation Form,” Ph.D. dissertation, Syracuse Univ., 1975. | |
Wang, C.Y., Shape classification of the parametric cubic curve and the parametric B-spline cubic curve, CAD, Vol. 13, No. 4, pp. 199-206, 1981. | |
Watkins, M.A., and Worsey, A.J., Degree reduction of Bezier curves, CAD, Vol. 20, No.7, pp. 398-405, 1988. | |
Weinstein, S.E., and Xu, Y., Degree reduction of Bezier curves by approximation and interpolation, in Approximation Theory, Anastassiou, G. A., Ed., New York: Dekker, 1992, pp. 503-512. | |
Welch, W., and Witkin, A., Variational surface modeling, Comput. Graph., Vol. 26, No. 2, pp. 157-166, 1992. | |
Woodward, C., Cross-sectional design of B-spline surfaces, Comput. and Graph., Vol. 11, No. 2, pp. 193-201, 1987. | |
Woodward, C., Skinning techniques for interactive B-spline surface interpolation, CAD, Vol. 20, No. 8, pp. 441-451, 1988. | |
Yamaguchi, F., Curves and Surfaces in Computer Aided Geometric Design, New York: Springer-Verlag, 1988. |